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Both genetic variants and brain region abnormalities are recognized as important factors for complex dis-
eases (e.g., schizophrenia). In this paper, we investigated the correspondence between single nucleotide
polymorphism (SNP) and brain activity measured by functional magnetic resonance imaging (fMRI) to
understand how genetic variation influences the brain activity. A group sparse canonical correlation anal-
ysis method (group sparse CCA) was developed to explore the correlation between these two datasets
which are high dimensional-the number of SNPs/voxels is far greater than the number of samples. Differ-
ent from the existing sparse CCA methods (sCCA), our approach can exploit structural information in the
correlation analysis by introducing group constraints. A simulation study demonstrates that it outper-
forms the existing sCCA. We applied this method to the real data analysis and identified two pairs of sig-
nificant canonical variates with average correlations of 0.4527 and 0.4292 respectively, which were used
to identify genes and voxels associated with schizophrenia. The selected genes are mostly from 5 schizo-
phrenia (SZ)-related signalling pathways. The brain mappings of the selected voxles also indicate the
abnormal brain regions susceptible to schizophrenia. A gene and brain region of interest (ROI) correlation
analysis was further performed to confirm the significant correlations between genes and ROIs.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction brain regions of schizophrenic patients (Jansma et al., 2004; Li et al.,
Schizophrenia is a complex disease and considered to be caused
by the interplay of a number of genetic factors (e.g., change of gene
regulation, and alteration of mRNA and SNP) and environmental ef-
fects. Genetic factors play an important role in causing schizophre-
nia disease. People born from a family with a history of
schizophrenia have higher risks of schizophrenia than those with-
out a family schizophrenia history. In recent years, many studies
have focused on exploring critical genes associated with the schizo-
phrenia. Many potential genetic variants have been reported as
possible risk factors such as the G72/G30 gene locus on chromo-
some 13q (Badner and Gershon, 2002; Abecasis et al., 2004) Gene
DISC1 variation (Callicott et al., 2005; Porteous et al., 2006) and
copy number variations on gene GRIK3, EFNA5, AKAP5 and CACNG2
(Wilson et al., 2006; Sutrala et al., 2007). In addition to genetic stud-
ies, fMRI has also been widely used for the study of schizophrenia
because of its capability to identify functional abnormalities within
2007; Meda et al., 2008; Szycik et al., 2009).
Genetic variants and brain region abnormalities are both impor-

tant markers for the study of schizophrenia. Combining both data
can not only contribute to a better understanding of biological
mechanisms on brain structure and function but also have the po-
tential to improve the diagnosis and treatments of complex dis-
eases. However, current imaging genetics studies either take
brain imaging measurements as endophenotypes to study the
associated genetic variants or investigate the effects of a small
set of candidate genetic variants on the whole brain measurements
(Hamid et al., 2009; Le Cao et al., 2009; Wiley, 2011). It is still chal-
lenging to explore the relationship between a large amount of ge-
netic variants and a large number of brain imaging measurements.
Therefore, correlative analysis approaches for large-scale multi-
modal data analysis are highly demanded.

In this work, we aim to study the effects of multiple SNPs or
genes on functional brain activity in schizophrenia. An effective
multivariate statistical method is needed. Canonical Correlation
Analysis (CCA (Hotelling, 1936)) or Partial Least Squares regression
(PLSR (Le Cao et al., 2008)) have been proposed to analyze multi-
modal datasets. The CCA aims to maximize the correlation be-
tween the linear combinations of variables from two data sets,
e.g., a linear combination of SNPs and a linear combination of
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voxels. However, the method will have the over-fitting issues in
analyzing high dimensional data such as SNP and brain imaging
data as shown in Fig. 1. Thousands of SNPs with linkage disequilib-
rium (LD) are detected to reflect the genetic variant at different lo-
cus. The number of voxels included in the whole brain fMRI image
is also very large (e.g., 53 � 63 � 46). Traditional CCA will perform
poorly in such a case due to the multi-collinearity (linear depen-
dence) problem, and thus having computational difficulty (Park-
homenko et al., 2009). To address above issue, sparse CCA (sCCA)
methods, mostly using the l � 1 norm (CCA-l1) or the combination
of l � 1 and l � 2 norm (CCA-elastic net) penalties, have been devel-
oped by introducing the sparse penalties into the traditional CCA
model (Waaijenborg et al., 2008; Le Cao et al., 2009; Parkhomenko
et al., 2009; Witten et al., 2009; Witten and Tibshirani, 2009; Bou-
tte and Liu, 2010). Despite the success, they didn’t account for
group structures within the data in the analysis (e.g., multiple SNPs
within the same gene, a group of voxels within the same region, a
group of voxels within the same ROI, etc.), which often exist or are
implied by the biological mechanism. For example, SNPs within the
same gene have similar functions and act together at the gene or
pathway level to affect the brain activity. These SNP effects can
be added up to a larger difference (Tyekucheva et al., 2011). Several
previous works have shown the benefit of accounting for the group
effect of features in the sCCA models (Chen and Liu, 2012; Chen
et al., 2013; Lin et al., 2013). However, to our knowledge, little
work has been reported to incorporate the group effect into the
sCCA model for fMRI and SNP data integration. Motivated by this
fact, in this paper, we developed a group sparse CCA model based
integration method by imposing the sparse group lasso penalty on
the CCA model for the integrative analysis of SNP and fMRI data;
please refer to Fig. 1 for illustration. This method has the following
advantages: (1) A group of features (voxels/SNPs) will be inspected
during the correlation analysis, which can study the joint effects of
multiple SNPs on the regions of voxels; (2) feature selection will be
performed at both group and single feature level. Irrelevant groups
of features as well as single feature within each group can be re-
moved. Our group sparse CCA method can both exploit group
information in the correlation analysis while filter out noisy fea-
tures within the group simultaneously.

The group sparse CCA can estimate the correlation between
canonical variates, corresponding to a set of significant SNPs or
brain imaging voxels. Based on the estimates, we provided a
Fig. 1. A schematic illustration of combining both fMRI image and SNP data
gene-ROI correlation analysis to further confirm the significance
of the correlations between genes and brain functions in ROIs.

The rest of the paper is organized as follows. The proposed
group sparse CCA model and algorithm are introduced in the sec-
tion of theory. The group sparse CCA based integration method
for SNP and fMRI data is described in the section of method. The
validation and comparison of our model with other sCCA models
on both simulated and real data analysis are presented in the sec-
tion of results. The pathway analysis results and limitations of the
proposed method are discussed finally.

2. Theory

In this section, we first introduces CCA model, based on which
the group sparse model is presented. Then we propose a numerical
algorithm based on block coordinate descent to solve the model.
Finally, we show that the general model we propose can include
several existing sCCA models and hence the numerical algorithm
can also be applied for their efficient solutions.

2.1. Group sparse CCA

We consider two sets of data X and Y with n samples, where X
has p variables and Y has q variables. Assuming p, q� n and the
columns of X and Y have been standardized such that the mean
of each column is zero and the 2-norm is one. The variance matri-
ces and covariance matrices of X and Y are denoted by

P
XX,
P

YY,P
XY (or

P
YX) respectively. The CCA model aims to find two loading

vectors or projections a, b, to maximize the correlation between
the linear combinations of variables in X and Y, atX and btY as
shown in the following equation:

max
a;b

at
X

XY
b s:t: at

X
XX

a ¼ 1; bt
X

YY
b ¼ 1 ð1Þ

There are over-fitting issues in Eq. (1) due to the small samples
but high dimensional variables (i.e., p, q� n), which also might re-
sult in the ill-condition of the matrices

P
XX and

P
YY. So, sparse

penalties such as the l � 1 norm, elastic net, have been imposed
on the loading vectors in Eq. (2) in CCA analysis.

min
a;b
�at

X
XY

bþk1WðaÞþk2UðbÞ s:t: at
X

XX
a61; bt

X
YY

b61 ð2Þ
by the group sparse CCA model to identify correlated genes and ROIs.



Table 1
The iterative algorithm of group sparse CCA.

1. Initialize u0 and v0 by traditional CCA decomposition, ||u0||2 = 1, ||v0||2 = 1.
2. Solve uj, vj using the following iterations until it convergence:

(a) Fix v ¼ v j�1; uj  arg min
u;d

kK � duvtk2
F þWðuÞ s:t: kuk2

2 6 1

(b) Fix u ¼ uj ; v j  arg min
v ;d

kK � duvtk2
F þUðvÞ s:t: kvk2

2 6 1

(c) dj  tr KvjðujÞt
� �

or trðKtujðv jÞtÞ
3. Update the remaining matrix K K � tr(Kvut)uvt; go to Step (1) to obtain

the next pair of loading vectors (u, v).
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where W(�) and U(�) denote the penalized function on a and b

respectively, which are often taken to be l – 1 norm, W(a) = kak1,
U(b) = kbk1. These sparse penalties can result in a large number of
features/variables to zero in a and b. In addition, the constrained
conditions in Eq. (2) are relaxed compared to Eq. (1) so that we
can first find the alternative solution in a closed region and then ob-
tain the solution of the optimization problem satisfying atP

XXa = 1,
btP

YYb = 1 (see optimization algorithms in Section 2.2). Similar to
conventional CCA, Sparse CCA can also perform multiple pairs of
canonical variates extraction iteratively as the following procedure:
maximizing the correlation between two data sets by extracting the
first pair of sparse loading vectors as well as pair of canonical vari-
ates; then removing the effects of the first pair of canonical variates
and finding the second sparse loading vectors that maximizes the
correlation but is irrelevant to the first pair. This process will not
stop until the rth projection pair is gained (r = rank (XtY)).

Group information of variables is expected to be incorporated in
the Eq. (2) by changing the penalized function since in many appli-
cations, a set of variables often form a group (e.g., SNPs spanning a
gene, genes in a pathway). Therefore, we propose a group sparse
CCA model by introducing the sparse group lasso penalty into Eq.
(2). For simplicity, we will only consider non-overlapping groups
in this paper and assume that variables in X and Y are partitioned
into L and H disjoint groups respectively. The following model,
namely group sparse CCA (or CCA-sparse group), is proposed to
consider group structures existed in the data:

min
a;b
� at

X
XY

bþ k1kakG þ s1kak1 þ k2kbkG þ s2kbk1

s:t: at
X

XX
a 6 1; bt

X
YY

b 6 1 ð3Þ

where kakG ¼
PL

l¼1 xlkalk2, kbkG ¼
PH

h¼1 lhkbhk2 are the group pen-
alties to account for joint effects of features within the same group.
This model is more realistic in many cases, e.g., multiple SNPs rather
than individual SNPs from the same gene work together as a group
to be associated with a disease. The group penalty uses the non-
differentiability of ||al||2 (or ||bh||2) at al = 0 (bh = 0) to set the
coefficients of the group to be 0; then the entire group of features
will be removed to achieve the group sparsity. While we consider
group effects, we can still keep the selection of individual
variable/feature. So the l � 1 norm penalties on the individual
features (i.e., ||a||1 and ||b||1) are imposed. k1 and k2 are the tuning
parameters to control the group sparsity while s1 and s2 are used to
control individual feature sparsity. xl and lh are the weights to ad-
just for the group size differences. We set them to be s1=2

i , where si is
the ith group size.

In a particular case, since sparse group lasso penalty is a combi-
nation of l � 1 norm and group lasso penalty, Eq. (3) can be re-
duced to the CCA-group model with only group lasso penalty
(s1 = s2 = 0) and CCA-l1 model without group lasso penalty
(k1 ¼ k2 ¼ 0). As discussed above, CCA-group model can tend to se-
lect features group by group and keep all features within a selected
group while CCA-l1 will ignore group effect among features.

2.2. Iterative optimization algorithm

To solve Eq. (3), we rewrite Eq. (3) based on the singular vector
decomposition of matrix K and impose sparse penalties on vectors
u, v

min
u;v
kK � duvtk2

F þ k1kukG þ s1kuk1 þ k2kvkG þ s2kvk1

s:t: kuk2
2 6 1; kvk2

2 6 1 ð4Þ

where K ¼
P�1=2

XX

P
XY

P�1=2
YY ¼

P
idiuiv i, and di is the positive square

root of the ith eigenvalue of KtK. ui, vi are the ith eigenvectors of KtK
corresponding to di. kuk2

2 ¼ 1; kvk2
2 ¼ 1 should be satisfied when the
solution of the optimization problem is obtained. The loading vec-
tors can then be derived by

ai ¼
X�1=2

XX
ui; and bi ¼

X�1=2

YY
v i ð5Þ

The matrices
P

XX and
P

YY in Eq. (5) might be ill-conditioned
because of the high dimensionality of data. We adopt Witten and
Tibshirani’s (2009) method by replacing the covariance matrices
with identity matrices I and hence penalizing the vectors u, v in-
stead of the loading vectors a, b.

Since the problem in Eq. (4) is still not a convex optimization
with respect to u and v, for simplicity, we decouple the problem
into two simple biconvex optimizations by fixing u and v alterna-
tively. An iterative algorithm is then derived to solve the problem,
as shown in Table 1.

Taking the solution of (a) for example, one can find the solution
with the following Lagrange form formulation:

min
u
� trðKvutÞ þ k1

XL

l¼1

xlkulk2 þ s1juj1 þ Dðkuk2
2 � 1Þ ð6Þ

where D is the parameter to make kuk2
2 ¼

PL
l¼1kulk2

2 ¼ 1. This is
converted into a simple optimization problem with separable objec-
tion function and sparse group lasso penalty. A block coordinate de-
cent algorithm has been developed to solve this problem efficiently
as shown in Table 2.

The coordinate decent algorithm has been shown to be effective
in solving generalized linear regression models (Wu et al., 2009;
Friedman et al., 2010a, 2010b), especially for underdetermined sys-
tem. It estimates parameter one by one by fixing the other param-
eters unchanged. Similarly, instead of estimating parameter
individually, block coordinate decent algorithm will estimate a
block of parameters each time while fixing the other blocks of
parameters. In data set X, each group k = 1,2, . . . ,L, will be in-
spected one by one. If a group is selected, we will then select each
feature in the group by the coordinate decent with the soft-thres-
holding. Since the optimization is convex, the optimal solution of
Eq. (6) is determined by a sub-gradient equation and will converge
to a global minimum.

The CCA-group model is a special case of group sparse CCA
when s1 = 0; the soft-threshold operator in Step (2) (Table 2) need
to be changed to the simpler form:

kSððKVÞðkÞ; s1Þk2 ¼ kðKVÞðkÞk2 ð7Þ

The general sparse CCA formula Eq. (3) that we propose can in-
clude a variety of sparse CCA models used before (Le Cao et al.,
2009; Witten and Tibshirani, 2009), e.g., CCA-l1 (Eq. (8)) and
CCA-elastic net (Eq. (9)) models. The coordinate decent algorithm
can also be applied to solve both models.

WðuÞ ¼ kuk1; UðvÞ ¼ kvk1 ð8Þ

WðuÞ ¼ ð1� d1Þkuk2
2 þ d1kuk1;

UðvÞ ¼ ð1� d2Þkvk2
2 þ d2kvk1 ð9Þ



Table 2
Block coordinate decent for group sparse CCA.

Input: iteration step j, uj, vj, ||uj||2 = 1, ||vj||2 = 1, k1; s1:

Output: uj+1

Solve uj using block coordinate decent until it convergence:
1. For each group k = 0 to L
2. Softk(Kv) = S((Kv)k, s1), where S(�) is the soft-thresholding function.

3. If kSoftkðKvÞk2 6 k1 then ujþ1
k ¼ 0.

4. Else

5. SgkðKvÞ ¼ 1
2 SoftkðKvÞ � k1xl

SoftkðKvÞ
kSoftkðKvÞk2

h i
.

6. Update ujþ1
k  SgkðKvÞ

D .
7. End if
8. End for

9. Update D ¼ k½Sg1ðKvÞ; Sg2ðKvÞ; . . . ; SgkðKvÞ�k to make kujþ1k2
2 ¼ 1.

10. Repeat (1–9), until kujþ1 � ujk2 6 e, else uj = uj+1.

894 D. Lin et al. / Medical Image Analysis 18 (2014) 891–902
where d1, d2 are the parameters, controlling the trade-off between
l � 2 norm and l � 1 norm penalties.
3. Method

We applied group sparse CCA to investigate the association of
functional brain regions with genetic variations as shown in
Fig. 1. Components extracted from fMRI represent brain regions
expressing the functional difference in different subjects. Compo-
nents from SNP data are linear combinations of SNPs from different
genes that may have associations with the disease. After prepro-
cessing, the collected SNPs and ROI-based voxels are both still high
dimensional with a large number of features compared to the
number of samples. We then used the group sparse CCA to esti-
mate two group loading vectors u and v, from which a pair of
canonical variates is obtained. The loading vectors for each compo-
nent reflect the effect size of the features on the correlation. Then u
and v were also used to perform gene-ROI correlation analysis to
identify the significantly correlated genes and ROIs.

3.1. Group sparse CCA for fMRI and SNP data analysis

We represented fMRI data collected from participants as a set of
spatial voxels. These voxels were divided into 116 ROIs based on
the aal (automated anatomical labelling) template (Tzourio-Mazo-
yer et al., 2002). These ROIs were assumed to be spatially indepen-
dent but the voxels within each ROI may correlate with each other.
These voxels were grouped by ROIs so that we can perform the
whole brain analysis (Ng and Abugharbieh, 2011). For SNP data,
we extracted those SNPs from preselected 74 reported SZ-risk
genes. These SNPs were grouped at gene level (Liu et al., 2013).
Hence the X and Y matrices can be constructed as follows:

X ¼ ½G1
X ;G

2
X ; . . . ;GL

X �; Gk
X 2 Rn�lk ; k ¼ 1;2; . . . ; L

Y ¼ ½G1
Y ;G

2
Y ; . . . ;GH

Y �; Gt
Y 2 Rn�ht ; t ¼ 1;2; . . . ;H:

where L = 74 indicates the number of genes in SNP data; H = 116 is
the number of ROIs used in fMRI data, and n is the number of sam-
ples. lk and ht are the number of SNPs and voxels contained in the
kth gene and tth ROI respectively. Under this data structure, two
sparse loading vectors u and v (or a and b) were also grouped in
the same way. This way the original data were projected into a
low dimensional space.

Four tuning parameters (k1; s1; k2; s2) were used in the model to
control the group sparsity (k1; k2) and individual feature sparsity
(s1, s2). A cross-validation can be used to select the optimal param-
eters but is time-consuming. Therefore, we divided the cross-vali-
dation into two steps: (1) using the CCA-group method to select
optimal k1; k2 by considering only the group penalty; (2) selecting
the optimal s1, s2 based on the selected k1; k2: In summary, the pro-
cedure of performing group sparse CCA on the data analysis is as
follows:

1. Decompose matrix K in Eq. (5) using SVD to initialize the load-
ing vectors and normalize the vectors with the l � 2 norm. Use
the two-step cross validation to obtain the optimal tuning
parameters.

2. Perform the sub-optimization analysis with respect to each
loading vector (u or v) in each modality alternatively by the
block coordinate decent algorithm. A stopping criterion is
assessed for each modality.

3. Two loading vectors are updated and the stopping criteria for
both loading vectors are assessed. If they are satisfied, the solu-
tion is obtained, go to Step 4. Otherwise, go back to Step 2.

4. Test the significance of the predict correlation (corrj) by permu-
tation. If the correlation is significant, go to Step 5. Otherwise,
there is no significant correlation between the current two data
sets.

5. Perform gene-ROI analysis to explore the pair-wise correlation
between each gene and ROI.

6. Calculate the remaining matrix and repeat step (1–4) to extract
the next pair of loading vectors until r pairs of loading vectors
are obtained or the extracted predict correlation (corrj) is not
significant.

3.2. Tuning parameters selection

The k-fold cross validation was recommended by Waaijenborg
and Zwinderman (2009) and Parkhomenko et al. (2009) for param-
eter selection. Parkhomenko et al. (2009) adopted a criterion that
maximizes the mean absolute canonical correlation value of the
testing set as shown in the following equation:

Dcorr1 ¼
1
k

Xk

i¼1

jcorðXiû�i;Y iv̂�iÞj ð10Þ

Waaijenborg et al. (2008) considered the mean difference be-
tween the canonical correlations of the training and testing subsets
as in the following equation:

Dcorr2 ¼
1
k

Xk

i¼1

jcorðX�iû�i;Y �iv̂�iÞ � corðXiû�i;Y iv̂�iÞj ð11Þ

This criterion determines the number of variables which tend to
have the same correlations in both training and testing subsets. It
is sensitive to the correlation sign change that if the correlation of
testing subset changes sign it would be penalized more than when
the sign would not change.

Witten and Tibshirani (2009) proposed another permutation
based method for optimizing parameters. The whole data set
(including both training and testing data sets) will be used to com-
pute the non-permuted correlation d0 and then X is permuted with
T times to calculate the permuted correlation di=1,. . .,T. The parame-
ters having the largest p-value as in Eq. (12) will be selected.

ppermute ¼ d0 �
1
T

X
i

di

 !,
stdðdi¼1;...;TÞ ð12Þ

Here, û�i and v̂�i are estimated loading vectors from training data
set. X�i and Y�i are training data set in which subset j is deleted.
Xi and Yi are the testing data set. Based on these three criteria, we
performed a simulation study using our proposed group sparse
CCA model and other sCCA models to choose the optimal criterion
(the details are described in Section 4.1).
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3.3. Gene-ROI correlation analysis

After the parameters were determined, we obtained the esti-
mates of vectors u, v as well as the corresponding canonical vari-
ates. We used these estimates to measure the strength and
significance of the correlation between genes and ROIs. The null
hypothesis of no correlation between a gene and ROI can be writ-
ten as H0 : q11 ¼ q12 ¼ � � �qck ¼ qsisj

¼ 0 versus the alternative
hypothesis HA : 9c; k > 0; qck – 0, where si and sj are the number
of SNPs and voxels in Genei and ROIj respectively; qck is the corre-
lation between the cth SNP and the kth voxel. To test the hypoth-
esis, we first calculated the pair-wise correlation between the SNPs
from Genei and voxels from ROIj. SNPs and voxels were indicated
by non-zero coefficients in u and v respectively Then, to avoid
the potential bias due to varying gene or ROI size, we averaged
the correlation of each SNP-voxel pair as the test statistics as
follows.

qij ¼
1

sisj

Xsi

c¼1

Xsj

k¼1

jqckj ð13Þ

By comparing our observed statistic qij with the null statistics q0
ij

with T times permutations of the samples, we can evaluate the sig-
nificance of the correlation by

p value ¼ fq0
b P qij; b ¼ 1;2; . . . ; Tg=T ð14Þ

This gene-ROI correlation analysis can also be applied to the gene–
gene correlation and ROI-ROI correlation studies.

3.4. Statistical evaluations

Although our CCA-group sparse method aims to obtain a higher
correlation with fewer features selected, in our real data both num-
ber of voxels and SNPs are much larger than that of subjects. In or-
der to test the significance of the correlation obtained by the CCA-
sparse group method, we took the permutation-based testing. We
first obtained u and v based on the optimal parameters, and then
permutated the order of subjects in SNP data randomly while
keeping the subject order in fMRI data unchanged. The correlation
for each permutation can be calculated by the same u and v, which
is expected to estimate the null distribution of the correlation. The
p-value can be estimated by large number of permutations. The
lower the p-value, the more significant the detected correlation is.

4. Results

4.1. Simulation

To assess the performance of the proposed group sparse CCA
method, we first simulated two correlated data sets and then we
compared group sparse CCA with the other penalized CCA methods
such as the CCA-group and CCA-l1 on these simulated data.

Two data sets of SNP data X with p SNPs and fMRI data Y with q
voxels were simulated. To correlate the SNPs with the voxels, a la-
tent model similar to (Parkhomenko et al., 2009) was used. We first
set a latent variable ! = {ci|i = 1, . . ., n} with normal distribution
Nð0;r2

cÞ to have the similar effect on the associated SNPs and vox-
els in the two data sets. Then X and Y data set were simulated from
a multivariate normal distribution by XtX and diag(

P
XX) respec-

tively, where the vectors xi e Rp, yi e Rq are the observations of
the ith sample in X and Y. a = [a1, . . ., aj, . . ., ap], b = [b1, . . .,
bk, . . ., bq], aj – 0, bk – 0, if xj, yk are the correlated variables; other-
wise, the variables would be considered as noise with zero means
(aj = 0, bk = 0). ci is the ith observation of !. r2

c ;r2
e , are the variances

of ! and noise variable, which were used to control the correlation
between SNPs and voxels.

P
p�p and

P
q�q were the variance–
covariance matrices of each data set. They were used to simulate
the group effect within each data set. For each data set, we set
the correlation between the correlated variables within the same
group as from the uniform distribution U(0.1,0.3).

The samples of two data sets were simulated from the multivar-
iate normal distribution. Then SNP data X will be converted into
categorical variables with three levels (e.g., �1, 0, 1) by specifying
the minor allele frequency (MAF) p from the uniform distribution
Unif(0.2,0.4). The probability of an observation being from a partic-
ular level was set to be p2, p(1 � p) and (1 � p)2 respectively. For
each variable, the expected number of observations in each level
was n1 = p2n, n2 = p(1 � p)n, n3 = (1 � p)2n. We sorted the observa-
tions in each variable and assign value 1 to those n1 observations
with the highest value, �1 to those n3 observations with lowest va-
lue and 0 in between (Simon and Tibshirani, 2012). To simulate the
fMRI data Y with a brain structure similar to that of real data, we
referred to the standard aal template with 116 brain ROIs contain-
ing 54277 voxels. The group structure of voxels is based on the
ROIs. Voxels correlated with SNPs were generated by latent vari-
able model. Irrelevant voxels within each ROI were simulated from
yt � Nðlt

0;
Pt

0Þ where lt
0 and

Pt
0 are mean and covariance matrix

estimated from the tth ROI in real data.
First, we compared the three parameter optimization criteria by

applying them to the simulation study. Two data sets X with 200
SNPs and Y with 200 voxels were simulated. Both data sets were di-
vided into 20 groups with group size 10. 20 SNPs from 4 groups in
set X and 30 voxels from 5 groups in set Y were set to be correlated.
Standard deviation rc = 1 and re = 0.3. The sample size was 100 and
50 simulations were replicated. The total true positive (TTP) and to-
tal discordance (TD: the total false positive plus the total false neg-
ative) were used for the comparison. Fig. 2 shows the box-plot of
TTP and TD by using different criteria. It can be seen that, by all
the methods, Dcorr1 tends to give higher TTP but also introduces
higher TD; the use of ppermute can cause the decrease of TD rapidly
at the cost of low TTP; and Dcorr2 is a trade-off between these two
criteria by keeping a high TTP and decreasing TD to a low
level. Hence the last one is chosen as our parameter selection
criterion.

Second, we compared the performance of three methods in the
simulation. SNP data X with 400 SNPs are divided into 20 groups
evenly. 4 groups were randomly selected and 15 SNPs randomly
selected from these 4 groups were generated to be correlated with
voxels, as shown in Fig. 3(a). For the sake of simplicity, 5% voxels
randomly from the first 4 regions with totally 214 voxels were
associated with SNPs (Fig. 3(e)). Fig. 3(b–d, f–h) shows the results
of recovered loading vectors u and v by CCA-l1, CCA-group and
CCA-sparse group methods. A 5-fold cross-validation was used to
select the optimal parameters. From Table 3, it can be seen that
the CCA-sparse group method can better estimate true u and v
than other two methods. For the SNP data, all three methods can
identify true SNPs (60) while CCA-l1 has more false positives (36,
shown in Fig. 3(b)) than those of CCA-group (20) and CCA-sparse
group (4). For the fMRI data, CCA-l1 also misses out more true vox-
els (29 out of 214) in Fig. 3(f) when selecting v. The CCA-group,
however, can better recover all the groups with true features. Nev-
ertheless, it selects all features from the group, which results in
very high false positive (4097, shown in Fig. 3(g)). CCA-sparse
group can not only identify the group structure to find more true
variables than CCA-l1 but also remove those noisy features in the
group, leading to the least false positive (113 false voxels versus
912 by CCA-l1 and 4097 by CCA-group).

Finally, we evaluated the performance of three models with re-
spect to different noise levels, which affected the values of correla-
tion between two data sets. 200 SNPs from 20 genes were
simulated in data set X. The group size was 10. 50 voxels from 5
ROIs were randomly selected to be correlated with 20 SNPs in X.



Fig. 2. The total true positive number (TPP) and total discordance (TD) of estimating correlations using CCA-l1, CCA-group and CCA-sparse group methods using three
different parameter selection criteria: corr1 (Eq. (10)) proposed by Parkhomenko et al. (2009), corr2 (Eq. (11)) proposed by Waaijenborg et al. (2008) and permutation based
criterion (Eq. (12)) proposed by Witten and Tibshirani (2009).

Fig. 3. A comparison of the performance of group sparse CCA and three sCCA methods. (a) True u; (b–d) u recovered by CCA-l1, CCA-group and CCA-sparse group respectively.
(e) True v; (f–h) v recovered by three sCCA methods.

Table 3
The count of true positive (TP), false positive (FP) and discordance by three methods.

Model TP (voxels/
SNPs)

FP (voxels/
SNPs)

Discordance (voxels/
SNP)

CCA-l1 185/60 912/36 941/36
CCA-group 214/60 4097/20 4097/20
CCA-sparse

group
200/60 113/4 127/4
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The sample size was 150. According to the correlation estimate in
(Parkhomenko et al., 2009), we simulated different level of
correlations between two data sets by changing the standard devi-
ation of the noise variable re from 0.1 to 1 with interval 0.1. From
the results in Fig. 4, we can see that when the true correlation in-
creases with the decrease of noise variance, more true variables
can be recovered with less total discordance by all three methods.
The CCA-group model can recover the most correlated variables
but has the highest total discordance. When re is larger than 0.6



Fig. 4. A comparison of three methods for different correlation level influenced by noise. (a) The value of total true positive obtained by three methods when the standard
deviation of noise increases from 0.1 to 1, showing that the highest correlation of true variables between two data sets is within the range from 0.958 to 0.18. (b) The total
discordance by three methods when the standard deviation of noise changes from 0.1 to 1.

Fig. 5. The comparison of the number of features in loading vectors u and v selected by three methods. (a) The number of SNPs and voxels selected by three methods with 50
sub-samplings. (b–c) Show the top ranked SNPs (b) and voxels (c) in the first pair of canonical variates with cut-off threshold = 0.3 selection probability.
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(the estimated highest correlation is 0.39), the number of TTP and
TD is relatively unchanged. When re decreases, more true variables
can be identified by all methods and the TD of CCA-l1 and CCA-
sparse group decreases rapidly.



Table 4
Correlation coefficients based on the variants estimated by three models in the test
data.

CCA-group lasso CCA-l1 CCA-sparse group

Test sample correlation (mean ± SD)
1st pair 0.4497±(0.043) 0.4235±(0.057) 0.4527±(0.048)
2nd pair 0.4137±(0.034) 0.3959±(0.045) 0.4292±(0.033)
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4.2. Experimental results

In this study, subject recruitment and data collection were con-
ducted by The Mind Clinical Imaging Consortium (MCIC). Two
types of data (SNP and fMRI) were collected from 208 subjects
including 92 schizophrenia patients (age: 34 ± 11, 22 females)
and 116 healthy controls (age: 32 ± 11, 44 females). All of them
were provided written informed consents. Healthy participants
were free of any medical, neurological or psychiatric illnesses
and had no history of substance abuse. By the clinical interview
of patients for DSM IV-TR Disorders (22) or the Comprehensive
Assessment of Symptoms and History, patients met criteria for
DSM-IV-TR schizophrenia (23). Antipsychotic history was collected
as part of the psychiatric assessment.

4.2.1. fMRI data collection and preprocessing
fMRI data were collected during a sensor motor task, a block-

design motor response to auditory stimulation. The images were
acquired on a Siemens3T Trio Scanner and 1.5 T Sonata with
echo-planar imaging (EPI) sequences taking parameters
(TR = 2000 ms, TE = 30 ms (3.0 T)/40 ms (1.5 T), field of
view = 22 cm, slice thickness = 4 mm, 1 mm skip, 27 slices, acquisi-
tion matrix = 64 � 64, flip angle = 90�). Data were pre-processed
with SPM5 (http://www.fil.ion.ucl.ac.uk/spm) and were realigned,
spatially normalized and resliced to 3 � 3 � 3 mm, smoothed with
a 10 � 10 � 10 mm3 Gaussian kernel, and analyzed by multiple
regression considering the stimulus and their temporal derivatives
plus an intercept term as repressors. Finally the stimulus-on versus
stimulus-off contrast images were extracted with 53 � 63 � 46
voxels and all the voxels with missing measurements were ex-
cluded. 116 ROIs were extracted based on the aal brain atlas, which
resulted in 41236 voxels left for analysis.

4.2.2. Genotyping and preprocessing
A blood sample was obtained for each participant and DNA was

extracted. Genotyping for all participants was performed at the
Mind Research Network using the Illumina Infinium HumanOm-
ni1-Quad assay covering 1,140,419 SNP loci. Bead Studio was used
to make the final genotype calls. PLINK software package (http://
pngu.mgh.harvard.edu/~purcell/plink) was used to perform a ser-
ies of standard quality control procedures, resulting in the final
dataset spanning 777,635 SNP loci. Each SNP was categorized into
three clusters based on their genotype and was represented with
discrete numbers: 0 for ‘BB’ (no minor allele), 1 for ‘AB’ (one minor
allele) and 2 for ‘AA’ (two minor alleles)’. SNP with >20% missing
data were deleted and missing data were further imputed. SNPs
with minor allele frequency <1% were removed. To reflect the influ-
ence of genetic variation on brain behavior, SNPs included in top 75
schizophrenia genes listed on the SZGene database (http://
www.szgene.org/) were selected for the analysis. This procedure
yielded 3082 SNPs, which were annotated with 74 genes. There
was no SNP found in the remaining one gene.

4.2.3. Correlation analysis
The fMRI voxels were grouped based on ROIs while SNPs were

grouped by genes. Then we applied our CCA-sparse group method
to the analysis of the correlation between two data sets. 208 sub-
jects were randomly divided into two subsets: 150 subjects for
training and the remaining 58 ones for testing. In training data
set, we fit three models: (i) CCA-group lasso, i.e., using group lasso
penalty on genes and ROIs, (ii) CCA-l1, i.e., only imposing l � 1
norm on the effects of all SNPs and voxels, and (iii) CCA-sparse
group model, i.e., using both group-level and single feature level
regularizations. The optimal parameters were obtained from train-
ing data by 5-fold cross validation. The models were estimated as
well as the features were selected from the training data using
the optimal parameters. Then, these estimated models were ap-
plied to test data to predict the correlation between two data sets.

To have a stable feature selection, we performed random sam-
pling from 208 subjects repeatedly for B times, selected the same
proportion of subjects for training and test data sets, and fitted
three models on each sub-sample. We assumed that those SNPs
and voxels selected more frequently are more valuable for explor-
ing the correlation between two data sets. For each sub-sample,
ûb; v̂b were estimated, b = 1,2, . . . ,B. A measure of feature impor-
tance can be computed by frequency of their appearance defined
as the selection probability in (15). A set of features with high va-
lue will be selected by a cut-off threshold.

pj ¼
1
B

XB

b¼1

Ið̂tb
j – 0Þ ð15Þ

where t̂b
j is taken to be ûb

j (or v̂b
j ), i.e., the loading coefficient of sCCA

model corresponding to the jth SNP (or voxel), and I(�) is indicator
function.

By the algorithm in Section 2.2, we can derive several pairs of
canonical variates by iteratively implementing the CCA decompo-
sition. Here, we only show the first two pairs of canonical variates.
B = 50 replicates were performed. To compare the performance, the
test correlations corðXtestû;Y testv̂Þ based on the estimated loading
vectors (û; v̂) in training data by three methods were calculated.
The numbers of selected features were also used for comparison.
Fig. 5(a) shows that CCA-group method chose the largest number
of SNPs and voxels compared to the other two methods while
CCA-sparse group method selected the least features due to the
double sparsity constraints on loading vectors. As shown in Table 4,
CCA-sparse group generally performs better than the other two
methods by obtaining higher predict correlations with comparable
low variance. The low variance of these correlations demonstrates
the robustness of the estimation. The correlation variance by CCA-
sparse group method is also comparable with that of the other two
methods. In addition, the small training and test correlation differ-
ence (Dcorr = 0.146, 0.1331, 0.1471 for three methods respectively)
indicates the advantage of using criterion Eq. (11) for tuning
parameters selection, i.e., the stability of the criterion regardless
of the method used.

We further discuss the selected features. Choosing SNPs and
voxels by ranking the selection probabilities (pj in Eq. (14)) with
a cut-off threshold 0.3, we summarized those top ranked SNPs
and voxels in two pairs of variates by three methods in Fig. 5(b
and c). There are a high proportion of overlapped SNPs and voxels
selected by these methods. Table 5 lists top ranked SNPs and cor-
responding genes in two pairs of variates by CCA-sparse group
method. The first pair contained 51 SNPs from 16 genes correlated
with 756 voxels from 36 ROIs with the average correlation 0.4527,
p < 0.001. 30 SNPs from genes ERBB4 and MAGI2 and 212 voxels
from ROIs 7 and 8 were selected by all methods. The other pair
had19 SNPs from 9 genes correlated with 1558 voxels from 29
ROIs, and the average correlation was 0.4292, p < 0.001. 3 SNPs
from MAGI2 and 251 voxels from ROIs 47, 51 were overlapped
by all three methods. Table 6 listed the top ranked brain ROIs in
the first and second pair of variates respectively. Fig. 6 shows the
brain mapping of genomic correlated ROIs. Several brain regions

http://www.fil.ion.ucl.ac.uk/spm
http://pngu.mgh.harvard.edu/~purcell/plink
http://pngu.mgh.harvard.edu/~purcell/plink
http://www.szgene.org/
http://www.szgene.org/


Table 5
The list of genes selected in the first and second pair of canonical variates.

Canonical variate Gene ID SNPs number

1st pair CHAT CHL1 COMT ERBB4 FOXP2 GABRB2 GABRG2 GRIN2B HTR1A HTR3A MAGI1 MAGI2 NOS1 NRG1 PLXNA2 PPP3CC 51
2nd pair CHL1 ERBB4 GRM3 MAGI2 MTHFR NRG1 PLXNA2 SLC1A2 SNAP29 19

Table 6
The correlated brain ROIs selected in two pairs of canonical variates.

1st pair 2nd pair

Brain region Brodmann area L/R volume (cm3) Brain region Brodmann area L/R volume (cm3)

Superior Frontal Gyrus 6, 8 3.1/0.1 Lingual Gyrus 17, 18, 19 5.4/6.5
Inferior Parietal Lobule 40 0.6/� Posterior Cingulate 18, 23, 30, 31 2.3/2.9
Medial Frontal Gyrus 6, 8, 32 0.7/0.3 Parahippocampa Gyrus 18, 19, 30 1.2/0.4
Precentral Gyrus 6 0.3/1.2 Precuneus 19, 31 0.7/0.8
Middle Frontal Gyrus 6, 8 4.5/0.6 Superior Temporal Gyrus 22 �/0.1
Thalamus � 0.1/0.4 Cingulate Gyrus 32 0.5/0.2
Cingulate Gyrus 6 0.3/1.2 Cuneus 17, 18, 19, 23, 30 8.1/9.3
Culmen � 0.1/0.5 Middle Occipital Gyrus 18 0.8/0.1
Declive � 0.2/0.6 Insula 13 0.1/0.2

Fig. 6. Maps showing regions correlated with genetic factors in the first (a) and second (b) canonical variates.
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have been reported to be susceptible to schizophrenia from other
neuroimaging studies (Shenton et al., 2001; Kumari et al., 2002;
Onitsuka et al., 2004; Torrey, 2007; Bellani et al., 2010; Pinault,
2011). They include superior, middle, and medial frontal gyrus,
inferior parietal lobule, superior temporal gyrus, thalamus, para-
hippocampal gyrus, cingulate gyrus, and lingual gyrus, which pro-
vided additional evidences that these disease relevant brain
regions may be affected by the correlated genomic variations.
4.2.4. Gene-ROI correlation analysis
Based on the two pairs of canonical variates, we further explored

and verified the correlation between genes and ROIs. We found that
some regions of brain might be correlated with a set of genes. For
each gene-ROI, gene-gene and ROI-ROI correlation, 10000 permuta-
tions (as mentioned in Method section) were performed to test the
significance. In Fig. 7(a), the absolute values of significant gene-ROI
correlation are 0.1862 ± 0.0317 (mean ± SD, p < 0.005). As shown in
Fig. 8(a), Gene ERBB4, NRG1, MAGI2 and GABRG2 show correlations
with some ROIs such as 3, 4, 7, 8 (the index of ROI is defined by the
aal template (Tzourio-Mazoyer et al., 2002)) with the correlation
(q = 0.1822, 0.1483, 0.1335,0.1782, p < 0.004) respectively. These
ROIs mostly consist of superior, middle, medial front gyrus and pre-
central gyrus located at frontal lobe which contains primary motor
cortex and has been suspected to have abnormal changes in
schizophrenia patients (Honey et al., 2005; Kiehl et al., 2005). ROIs
75, 76, 77, 11 and 13(not shown) are also found to be correlated
with gene ERBB4, NRG1, and MAGI2 with the correlation value of
0.1822, 0.1649 and 0.1541 respectively. These ROIs are mainly lo-
cated at thalamus (right) which plays a critical role in coordinating
the pass of information between brain regions. Many studies show
the association between dysfunction of thalamus with schizophre-
nia (Kiehl and Liddle, 2001; Clinton and Meador-Woodruff, 2004;
Sui et al., 2011). These three genes are also correlated with each
other, which may have the similar effects on the ROIs. In addition,
ROIs 91, 92, 99, 100, 103, 111, 112 are correlated with many genes
(e.g. GRIN2B, CHL1, ERBB4, NRG1, FOXP2, MAGI1, GABRG2, MAGI2).
These ROIs are located at declive of cerebellum and culmen. Their
relationship with schizophrenia is not clear yet but several previous
publications have reported significant difference of these regions
between normal control and schizophrenia patients (Kim et al.,
2009) and there are models of schizophrenia which discuss impor-
tance of the cerebellum (Andreasen and Pierson, 2008).

In the second pair of canonical variates (Fig. 7(b)), the absolute
value of significant gene-ROI correlation is 0.1713 ± 0.0308
(mean ± SD, p < 0.005). There are two patterns apparent in the fig-
ure. The first pattern corresponds to ROIs 40, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 67, 68, which are located at occipital
lobe including lingual gyrus, posterior cingulate, precuneus,



Fig. 7. Heatmap of the gene-ROI correlations derived from the first (a) and second (b) pairs of canonical variates.

Fig. 8. (a) ROIs 3, 4, 7, 8 which are identified to be mainly correlated with genes ERBB4, NRG1, MAGI1 and GABRG2. (b) ROIs 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56, 67, 68 which are found to correlate with Gene ERBB4, CHL1, GRM3 and MAGI2. Note: the index of ROI is given by the aal template (Tzourio-Mazoyer et al., 2002).

Fig. 9. Functional network built based on the genes identified within the two pairs of canonical variates.
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parahippocampagyrus and superior, middle and inferior occipital
gyrus as shown in Fig. 8(b). Four genes ERBB4, CHL1, GRM3 and
MAGI2 were significantly correlated with these ROIs at 0.1776,
0.1356, 0.1762 and 0.1429, p < 0.005 respectively. These critical re-
gions have been widely studied and are shown to have potential
relationship with schizophrenia (Kiehl et al., 2005; Fransson and
Marrelec, 2008; Kim et al., 2009). The second pattern are ROIs 1,
24, 57 from precentral gyrus at parietal lobe corresponding to
genes SNPA29, MTHFR, SLC1A and NRG1 with the correlation of
0.2251, 0.1899, 0.1816 and 0.21 respectively.
5. Discussion and conclusion

In this paper, we proposed a novel method to explore the rela-
tionship between genomic data and fMRI brain imaging data by
considering the group effects of the variables in the data. We intro-
duced the group sparse CCA method and the numerical implemen-
tation based on the regularized SVD and block coordinate decent
algorithm. The performance of group sparse CCA model was com-
pared with other sCCA models in the simulation study, showing
that our group sparse CCA method could better recover the true
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correlations with lower false positive and total discordance. Then
we applied the method to correlation analysis between the SNP
data and fMRI imaging data. Two pairs of canonical variates with
significant correlations were identified. There are 5 pathways im-
plied by these identified genes, which may involve with the biolog-
ical processes related to schizophrenia. The SZ-risk genes
correlated with brain regions have also been reported to be suscep-
tible to schizophrenia, which further validates the results of our
method.

We identified two pairs of canonical variates with significant
correlations and further verified those linked components between
gene-ROI with significant pair-wise correlation. Those identified
genes are from the preselected 74 genes from a database which
were reported to be susceptible to SZ. Some of these genes may
not directly show group difference in our fMRI data. Therefore, in
this section, we focus on those group-discriminating genetic fac-
tors associated with motor response task-related brain function
disruption in schizophrenia. We use the difference of minor allele
frequency (MAF) between case and control group to evaluate the
effects of the SNPs in the gene correlated with ROI component. Sig-
nificantly higher MAF in case group indicates the positive discrim-
inating effect while lower MAF indicates the negative
discriminating effect. Pathway analysis of these important genes
is performed through Ingenuity Pathway Analysis (IPA: Ingenuity
Systems, http://www.ingenuity.com). We found those selected
genes involving in 5 pathways as shown in Fig. 9.

(1) Neuregulin signalling pathway: NRG1 and ERBB4. These two
genes have significant effects in both pairs of canonical variates.
It has been reported that the NRG1-ERBB4 modulates some plau-
sible neurobiological mechanisms, i.e., neuronal plasticity in
human brain which may be altered in SZ (Buonanno, 2010). In
our results, SNPs ‘rs10090544’, ‘rs16878394’, ‘rs7843384’(NRG1)
and’rs16847732’, ‘rs16847769’, ‘rs2008506’ in ERBB4 exhibit
higher MAFs in patients;rs2466063(NRG1) and the MAFs
in’rs11903508’, ‘rs16846111’, ‘rs16846352’in ERBB4 are
lower in patients indicating negative effect.

(2) Glutamate receptor signalling: GRIN2B, GRM3 and SLC1A2.
These genes are involved in encoding ionotropic glutamate
receptors and histamine receptors which may regulate the
neurotransmitter transmission associated with SZ (Bishop
et al., 2005). Several researches have supported the possibil-
ity of GRIN2B conferring the susceptibility to schizophrenia
(Ohtsuki et al., 2001; Qin et al., 2005). GRM3 may be
involved in the pathophysiology of schizophrenia, and its
associated cognitive impairment, especially at prefrontal
and hippocampal regions (Egan et al., 2004). In our
results, ‘rs2299218’, ‘rs802432’ in GRM3 and ‘rs2284425’
in GRIN2B have lower MAFs in patients showing negative
effects while ‘rs3026164’(GRIN2B), ‘rs802425’ (GRM3)
and ‘rs11033095’ (SLC1A2) have positive effects on the
disease.

(3) GABA receptor signalling: GABRB2 and GABRG2. GABA neu-
ronal dysfunction has been found to associate with cognitive
impairment of schizophrenia. We identified a SNP ‘rs153303’
(GABRB2) with lower MAF in schizophrenia, showing nega-
tive effect while ‘rs211037’ (GABRG2) has higher MAF in
patients with a possible opposite influence.

(4) Calcium signalling pathway: HTR3A, ERBB4 and PPP3CC.
Recentbiochemical research supports that schizophrenia
may be produced by alterations in various intracellular mol-
ecules as long as these alterations lead to abnormal func-
tioning of some central intracellular regulatory pathways
and one of unifying elements of molecular changes in
schizophrenia is their association with potential altered
Ca2+signalling (Lidow, 2003).‘rs1150219’ (HTR3A) and
‘rs7010861’ (PPP3CC) both show higher MAFs in patients
in the results.

(5) Tight junction: MAGI1, MAGI2. These genes attend the coding
for MAGI proteins which may relate to SZ by influencing the
development and communication between nerve cells
(Karlsson et al., 2012). In our results, ‘rs9311944’, ’rs6809559’
(MAGI1), and ‘rs10230275’, ’rs10229284’, ’rs1330490’
(MAGI2) present higher MAFs in patients while ‘rs9821646’,
’rs2061937’(MAGI1), ’rs10230752’, ’rs10953782’(MAGI2)
exhibit lower MAFs in patients.

The tuning parameters selection criteria used in this work are
also important. The performance of Waaijenborg et al.’s criterion
is better than those of other two criteria in terms of feature selec-
tion accuracy, which is consistent with the conclusion from (Waai-
jenborg and Zwinderman, 2009). However, these parameter
selection criteria are not directly used for the purpose of feature
selection; a better criterion can be developed. In addition, the selec-
tion of tuning parameters is via cross-validation, relying on large
training data, which is often not available. Alternatively, Bayesian
information criterion and Akaike information criterion (Posada
and Buckley, 2004) can be used for the optimal parameter selection.
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